Skip to main content

Mark Moir on Transactional Memory

This is another one of those Google talks. This time, it is Mark Moir talking about the transactional memory work he is doing at Sun. It is very useful if you are interested in listening to a strong statement about building hybrid software / hardware transactional memory systems.

As someone who has written papers on transactional memory systems, I am still unconvinced that they are the panacea that some of their supporters seems to claim (not Mark, as far as I can tell). Plusses:

a) Deadlock avoidance (if the semantics are chosen correctly),

b) More easily programmed non-blocking algorithms (if the system is implemented incredibly carefully).

Minuses:

a) They are still prey to the other problems of parallel shared memory systems, like data races and atomicity problems,

b) I have yet to hear a convincing argument as to what their actual semantics should be, especially as regards nested transactions, but even for ordinary transactions.

One language design (which shall remain nameless) had an built-in transactional mechanism. When I asked the designer how it worked, he said that they implemented it with a single big lock, and hoped to improve the performance later. This basically throws out any atomicity guarantees, and is also a potentially fatal performance flaw. It seems to me that before TM advocates can talk about benefits for programmability, they have to straighten out what it means to program one of these things.

I could go on about this for a very long time, but there really isn't much of a point. I'm actually on a major tangent from the main point, which is that Mark is doing very good work, and (wisely) avoided most of these sorts of questions in the talk.

Comments

Popular posts from this blog

Double Checked Locking

I still get a lot of questions about whether double-checked locking works in Java, and I should probably post something to clear it up. And I'll plug Josh Bloch's new book, too. Double Checked Locking is this idiom: // Broken -- Do Not Use! class Foo {   private Helper helper = null;   public Helper getHelper() {     if (helper == null) {       synchronized(this) {         if (helper == null) {           helper = new Helper();         }       }     }   return helper; } The point of this code is to avoid synchronization when the object has already been constructed. This code doesn't work in Java. The basic principle is that compiler transformations (this includes the JIT, which is the optimizer that the JVM uses) can change the code around so that the code in the Helper constructor occurs after the write to the helper variable. If it does this, then after the constructing thread writes to helper, but before it actually finishes constructing the object,

What Volatile Means in Java

Today, I'm going to talk about what volatile means in Java. I've sort-of covered this in other posts, such as my posting on the ++ operator , my post on double-checked locking and the like, but I've never really addressed it directly. First, you have to understand a little something about the Java memory model. I've struggled a bit over the years to explain it briefly and well. As of today, the best way I can think of to describe it is if you imagine it this way: Each thread in Java takes place in a separate memory space (this is clearly untrue, so bear with me on this one). You need to use special mechanisms to guarantee that communication happens between these threads, as you would on a message passing system. Memory writes that happen in one thread can "leak through" and be seen by another thread, but this is by no means guaranteed. Without explicit communication, you can't guarantee which writes get seen by other threads, or even the order in whic

Date-Race-Ful Lazy Initialization for Performance

I was asked a question about benign data races in Java this week, so I thought I would take the opportunity to discuss one of the (only) approved patterns for benign races. So, at the risk of encouraging bad behavior (don't use data races in your code!), I will discuss the canonical example of "benign races for performance improvement". Also, I'll put in another plug for Josh Bloch's new revision of Effective Java (lgt amazon) , which I continue to recommend. As a reminder, basically, a data race is when you have one (or more) writes, and potentially some reads; they are all to the same memory location; they can happen at the same time; and that there is nothing in the program to prevent it. This is different from a race condition , which is when you just don't know the order in which two actions are going to occur. I've put more discussion of what a data race actually is at the bottom of this post. A lot of people think that it is okay to have a data